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For isotropic and homogeneous nonlinear left-handed materials, for which the effective medium approxi-
mation is valid, Maxwell’s equations for electric and magnetic fields lead naturally, within the slowly varying
envelope approximation, to a system of coupled nonlinear Schrödinger equations. This system is equivalent to
the well-known Manakov model that under certain conditions, is completely integrable, and admits bright and
dark soliton solutions. It is demonstrated that left- and right-handedsnormald nonlinear media may have
compound dark and bright soliton solutions, respectively. These results are also supported by numerical
calculations.
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Recently the study of the electromagneticsEMd properties
of artificial complex media with simultaneously negative di-
electric permittivityeef f and magnetic permeabilitymef f has
been the subject of great attention. Such media are usually
referred to as left-handed materialssLHMsd, f1g and they
demonstrate a number of peculiar properties: reversal of
Snell’s law of refraction, reversal of the Doppler shift, coun-
terdirected Cherenkov radiation cone, negative refraction in-
dex, the refocusing of EM waves from a point source, etc.
The above-mentioned properties follow directly from Max-
well’s equations with appropriate constitutive relations. Pen-
dry f2g has proposed the intriguing possibility of exploiting
the negative refraction index property of LHMs in order to
overcome known problems with common lenses and to
achieve a perfect lens that would focus both the propagating
as well as the evanescent spectra.

Typical LHMs are composed of a combination of a regu-
lar array of electrically small resonant particles referred to as
split-ring resonatorssSRRsd and a regular array of conduct-
ing wires f2–6g, responsible for the negativemef f and eef f,
respectively. The size and spacing of the conducting ele-
ments of which the medium is composed are assumed to be
on a scale much smaller than the wavelengths in the fre-
quency range of interest, so that the composite medium may
be considered as a continuous and a homogeneous onesef-
fective medium approximationd. Thus far, almost all proper-
ties of LHMs were studied in the linear regime of wave
propagation, when botheef f and mef f are considered to be
independent of the field intensities. However, nonlinear ef-
fects in LHMs have been recently taken under consideration
by some authorsf7–9g. Zharovet al. f7g considered a two-
dimensional periodic structure created by arrays of wires and
SRRs embedded into a nonlinear dielectric, and they calcu-
latedeef f andmef f for a Kerr-type dielectric permitivity. They
showed that the magnetic field intensity couples to the mag-
netic resonance of the SRR in a nontrivial way, and that
changing the material properties from left- to right-handed
and back is allowed by varying the field intensity. The study
of the nonlinear properties of LHMs could facilitate future
efforts in creating tunable structures where the field intensity
changes their transmission properties.

In the present work we show that for an isotropic, homo-
geneous, quasi-one-dimensional LHM, Maxwell’s equations
with nonlinear constitutive relations lead naturally to a sys-
tem of coupled nonlinear SchrödingersCNLSd equations for
the envelopes of the propagating electric and magnetic fields.
This system is equivalent to the Manakov modelf10g that,
under certain conditions, admits soliton solutions consisting
of two componentssvector solitonsd. For specific parameter
choices, corresponding to either a left-handed or a right-
handed medium, we find compound dark and bright soliton
solutions, respectively. The constitutive relations can be gen-
erally written as

D = eef fE = eE + PNL, s1d

B = mef fH = mH + M NL, s2d

whereE andH are the electric and magnetic field intensities,
respectively,D is the electric flux density, andB is the mag-
netic induction. The linear dielectric and magnetic responses
of the LHM are described bye and m, respectively, while
PNL=eNLE andM NL=mNLH are the nonlinear electric polar-
ization and the nonlinear magnetization of the medium, re-
spectively.

It is known thateef f andmef f in a LHM have to be disper-
sive, otherwise the energy density could be negativef1g.
Their frequency dispersion, including nonlinear effectssbut
neglecting lossesd, is given byf7g

eef fsvd = e0SeDsuEu2d −
vp

2

v2D , s3d

mef fsvd = m0S1 −
Fv2

v2 − v0NL
2 suHu2dD , s4d

where vp is the plasma frequency,F is the filling factor,
v0NL=v0NLsuHu2d is the nonlinear resonant SRR frequency,
and eDsuEu2d=eD0+auEu2, with a the strength of the nonlin-
earity. Positivesnegatived a corresponds to a focusingsdefo-
cusingd dielectric. For a linear dielectricv0NLsuHu2d→v0,
wherev0 is the linear resonant SRR frequency. Then Eqs.s3d
and s4d reduce to previously known expressionsf5,11g. The
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parametersF, vp, andv0 are related to geometrical and ma-
terial parameters of the LHM components. Althougheef f can
be readily put in the forme+eNLsuEu2d, for mef f this is not an
obvious task, sincemef f=mef fsv0NLd, and v0NL depends on
uHu2 as f7,8g

aV2X6uH u2 = A2Ec
2s1 − X2dsX2 − V2d2, s5d

where X=v0NL/v0, V=v /v0, Ec is a characteristicslarged
electric field, andA is a function of physical and geometrical
parametersf7,8g. Our a is related to the parameters of Eq.
s5d as a= ±1/Ec

2, where the1 s2d sign corresponds to a
focusing sdefocusingd dielectric. Choosing fp=vp/2p
=10 GHz and f0=v0/2p=1.45 GHz, left-handed behavior
appears in a narrow frequency bandsfrom f
=1.45 to 1.87 GHzd. For relatively small fields whenmef f is
truly field dependent, one may consider that the magnetic
nonlinearity mef f=m+mNLsuHu2d is of the Kerr type, i.e.,
mNLsuHu2d=buHu2 sFig. 1d. The strength of the magnetic non-
linearity b can be treated as a fitting parameter.

Using Eqs.s1d ands2d and known identities, we get quite
general vector wave equations for the fieldsE andH,

¹2E − me
]2E

]t2
− m

]2PNL

]t2
− = s= ·Ed

=
]

]t
fs=mNLd 3 Hg +

]

]t
FmNL

]

]t
seE + PNLdG , s6d

¹2H − me
]2H

]t2
− e

]2M NL

]t2
− = s= ·Hd

= −
]

]t
fs=eNLd 3 Eg +

]

]t
FeNL

]

]t
smH + M NLdG . s7d

Consider anx-polarized plane wave with frequencyv propa-
gating along thez axis f12g:

E = „Esz,td,0,0…, H = „0,Hsz,td,0…, s8d

where

Esz,td = qsz,tdeiskz−vtd, Hsz,td = psz,tdeiskz−vtd, s9d

with k being the wave number. The envelopesqsz,td and
psz,td of E andH, respectively, change slowly inz andt. We
therefore introduce the slow variables

j = «sz− v8td, t = «2t, s10d

where« is a small parameter, andv8=]v /]k is the group
velocity of the wave. Taking into account Eqs.s8d and s9d,
substituting slow variables into Eqs.s6d and s7d, assuming

that a=â«2, b=b̂«2, and expressingp and q as asymptotic
expansions in terms of« f12g,

qsj,td = q0sj,td + «q1sj,td + «2q2sj,td + ¯ ,

psj,td = p0sj,td + «p1sj,td + «2p2sj,td + ¯ , s11d

we get various equations in increasing powers of«. The lead-
ing order problem gives the dispersion relationv=ck, where
c=Î1/em. At Os«1d, the group velocity is given asv8
=kc2/v. At Os«2d, we obtain

i
]q0

]t
+

v9

2

]2q0

]j2 +
vc2

2
sâmuq0u2 + eb̂up0u2dq0 = 0, s12d

i
]p0

]t
+

v9

2

]2p0

]j2 +
vc2

2
seb̂up0u2 + âmuq0u2dp0 = 0, s13d

wherev9=sc2−v82d /v, t is the slow time, andj is the slow
space variable moving at the linear group velocity. By res-
caling t, j, and the amplitudesq0,p0 according to

j = X, T = v9t/2, s14d

Q = ÎuLq/v9uq0, P = ÎuLp/v9up0, s15d

whereLq=vc2mâ andLp=vc2eb̂, we get

iQT + QXX + ssquQu2 + spuPu2dQ = 0, s16d

iPT + PXX + sspuPu2 + squQu2dP = 0, s17d

wheresq,p;sgnsLq,pd. Equationss16d ands17d are a special
case of the fairly general and frequently studied system of
CNLS equationssManakov modeld known to be completely
integrable forsq=sp=s f10g. A number of bright and dark
soliton solutions have been obtained for Eqs.s16d and s17d
when s= ±1 f13–19g. There is evidence that single-soliton
ssingle-humpd solutions are stable while multihumps are not

f16g. The signs of the productsmâ andeb̂ determine the type
of nonlinear self-modulation sself-focusing or self-
defocusingd effects that will occur. Fors= ±1 both fields
experience the same type of nonlinearity.

For e ,m.0 andâ,b̂.0 we haves= +1, and the system
of Eqs.s16d and s17d accepts solutions of the formf15g

QsX,Td = usXdeinq
2T, PsX,Td = vsXdeinp

2T, s18d

whereu,v are real functions andnq,up are real positive wave
parameters. The latter is necessary, if we are interested in
solitary waves that exponentially decay asuXu→`. Introduc-
ing Eq. s18d into Eqs.s16d and s17d we get

FIG. 1. mef f as a function ofuHu2/Ec
2, for V=1.1 ssolidd, 1.15

sdottedd, 1.20 sdashedd, 1.25 slong-dashedd, A=3, F=0.4, andâ
.0. Inset: Fitting to a line of the three first curves of the main
figure for relatively small fields.
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uXX − nq
2u + su2 + v2du = 0, s19d

vXX − np
2v + sv2 + u2dv = 0. s20d

For nq,p=n, Eqs.s19d and s20d have a one-parameter family
of symmetric and single-humped soliton solutionssFig. 2d
f15–17g

usXd = ± vsXd = n sechsnXd. s21d

There are also periodic solutions of the form

usXd = A cossBXd, vsXd = A sinsBXd, s22d

whereA=În2+B2 with B an arbitrary parameter. Now with-
out loss of generality, we takenq=1 and denotenp asn. This
can always be achieved by a rescaling of variablesu, v, and
X. Then, for 0,n,1 there is another, in general asymmet-
ric, one-parameter family of solutions for each fixedn
f15,18g,

usXd = Î2s1 − n2d coshsnXd/k, s23d

vsXd = − nÎ2s1 − n2d sinhsX − X0d/k, s24d

where

k = coshsX − X0dcoshsnXd − n sinhsX − X0dsinhsnXd

where X0 is an arbitrary parameter. ForX0=0, u becomes
symmetric andv antisymmetric.

For e ,m,0 and â,b̂.0 we haves=−1, and Eqs.s16d
and s17d accept dark soliton solutions of the formf19g

QsX,Td = PsX,Td = kftanhskXd − igeiskX−5k2Td, s25d

which are localized dips on a finite-amplitude background
wave, as shown in Fig. 3. In this very interesting case of a
LHM the electric and magnetic fields are coupled together,
forming a dark compound soliton. Note that the relative am-
plitudes are controlled by the corresponding nonlinearities
and frequency. Fors=−1 Eqs.s16d ands17d also have solu-
tions of the formf19g

QsX,Td = usXde−inq
2T, PsX,Td = vsXde−inp

2T, s26d

whereu,v are real functions andnq,np are real positive wave
parameters. Introducing Eqs.s26d into Eqs.s16d ands17d, we
get

uXX + nq
2u − su2 + v2du = 0, s27d

vXX + np
2v − sv2 + u2dv = 0. s28d

For nq,p=n, Eqs.s27d and s28d allow for kink-shaped local-
ized soliton solutionsf20g

usXd = ± vsXd = sn/Î2dtanhsnX/Î2d, s29d

as can be seen in Fig. 4. In the context of the propagation of
two polarization components of a transverse EM wave in a
Kerr-type medium, a solution of this kind is often called a
polarization domain wall. There are also periodic solutions
of the form

usXd = A cossBXd, vsXd = A sinsBXd, s30d

whereA=În2−B2 with B,n an arbitrary parameter.
In order to check the validity of the Kerr-type approxima-

tion for the magnetic nonlinearity, we performed extensive
numerical simulations of the complete Eqs.s6d and s7d for
the fields of Eqs.s8d and s9d using the full expression for
mef f, with v0NL obtained analytically from Eq.s5d, and
slightly different normalization. In the simulations we used
the exact solitons of Eq.s21d for a right-handed medium
sRHMd and Eq.s25d for a LHM as initial conditions and
tested their subsequent time evolution and resulting stability.
The Q-field amplitudes are shown in Fig. 5 for a right-stwo
right figuresd and a left-stwo left figuresd handed medium
with V=1.2 and 3.0, respectively. We take thesaveraged am-
plitude of Q to be unity for the right-handed medium, while
the amplitude of the background wave ofQ is unity for the
LHM. Similar results are obtained for the fieldP. In the right
part of Fig. 5, two bright soliton solutions of the form of Eq.
s21d are shown, with their difference being the chosen value

FIG. 2. Envelopesq0 and p0 of the compound bright soliton
ssp=sq= +1d for n=1 andr =Lq/Lp=2 in arbitrary units, with the
maximum amplitude ofp0 normalized to 1.

FIG. 3. Envelopesq0 and p0 of the compound dark soliton
ssp=sq=−1d for k=1 andr =Lq/Lp=2 in arbitrary units, with the
minimum amplitude ofp0 normalized to 1.

FIG. 4. Envelopesq0 andp0 of the kink-shaped compound soli-
ton ssp=sq=−1d for n=1 andr =Lq/Lp=2 in arbitrary units, with
the maximum amplitude ofp0 normalized to 1.
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of n in the initial conditions. For relatively highn the soliton
is still stable, but its amplitude is strongly oscillating. For
relatively low n the soliton is propagating practically undis-
turbed. In the left part of Fig. 5 two dark soliton solutions of
the form of Eq.s25d are shown, with their difference being
the chosen value of the constantk in the initial conditions.
Again, for relatively highk the soliton develops strong os-
cillations and deforms as time progresses while for relatively
low k the soliton is propagating practically undisturbed. The
numerics thus demonstrates clearly that the analytical solu-
tions of Eqs.s12d and s13d are good approximate solutions
for the complete problem at relatively small fields while at

larger amplitudes the exact solitons deform. This is expected
since magnetic nonlinearity ceases to be of Kerr type and
saturation effects become more important.

In conclusion, we obtained a system of CNLS equations
equivalent to the Manakov model describing the propagation
of EM waves in a nonlinear LHMsas well as in a nonlinear
RHMd for relatively small fields. Unlike a recent articlef21g,
where only magnetic nonlinearity was considered in the
propagation of EM waves in LHMs, in the present work both
magnetic and dielectric nonlinearities were retained. The
present analysis, however, does not address the issue of the
switching effect between normal mediumsRHMd and LHM
properties. Although not obvious from Eqs.s3d–s5d, reduc-
tion to the Manakov form becomes possible after a proper
approximation of the complex Eqs.s6d and s7d. It turns out
that for the choice of parameters corresponding to a LHM,
the system admits compound dark soliton solutions. For a
choice of parameters corresponding to the normal medium,
the system admits compound bright soliton solutions. By re-
ferring to compound “dark” and “bright” solitons we mean
that the soliton components, i.e., the envelopes of the electric
and the magnetic fields, are either both dark or both bright.
The described effects are not limited to the specific SRR-
wire system. They should also be present in other nonlinear
LHM designs, such as photonic crystalsf22g, coupled nano-
wire systemsf23g, transmission line systemsf24g, and pho-
tonic systemsf25g. The case where the fields in the medium
experience different types of nonlinearity, leading tosq=
−sp=1 or sp=−sq=1, corresponds to a medium of positive
eef f and negativemef f or negativeeef f and positivemef f, re-
spectively. This interesting case where the Manakov system
does not seem to be integrable will be treated numerically in
a future publication.
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FIG. 5. Space-time evolution of solitons. Right: Bright solitons
sRHMd with high supperd and low slowerd amplituden. Left: Dark
solitonssLHM d with high supperd and low slowerd amplitudek.
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