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For isotropic and homogeneous nonlinear left-handed materials, for which the effective medium approxi-
mation is valid, Maxwell's equations for electric and magnetic fields lead naturally, within the slowly varying
envelope approximation, to a system of coupled nonlinear Schrédinger equations. This system is equivalent to
the well-known Manakov model that under certain conditions, is completely integrable, and admits bright and
dark soliton solutions. It is demonstrated that left- and right-han@edma) nonlinear media may have
compound dark and bright soliton solutions, respectively. These results are also supported by numerical

calculations.
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Recently the study of the electromagnedVl) properties In the present work we show that for an isotropic, homo-

of artificial complex media with simultaneously negative di- geneous, quasi-one-dimensional LHM, Maxwell’'s equations
electric permittivity ;s and magnetic permeabilitg.;; has  with nonlinear constitutive relations lead naturally to a sys-
been the subject of great attention. Such media are usualtgm of coupled nonlinear Schroding€ENLS) equations for
referred to as left-handed materidlsHMs), [1] and they the envelopes of the propagating electric and magnetic fields.
demonstrate a number of peculiar properties: reversal ofhis system is equivalent to the Manakov mofiED] that,
Snell’'s law of refraction, reversal of the Doppler shift, coun- under certain conditions, admits soliton solutions consisting
terdirected Cherenkov radiation cone, negative refraction inef two componentgvector solitons For specific parameter
dex, the refocusing of EM waves from a point source, etcchoices, corresponding to either a left-handed or a right-
The above-mentioned properties follow directly from Max- handed medium, we find compound dark and bright soliton
well’s equations with appropriate constitutive relations. Pensolutions, respectively. The constitutive relations can be gen-
dry [2] has proposed the intriguing possibility of exploiting erally written as
the negative refraction index property of LHMs in order to
overcome known problems with common lenses and to
achieve a perfect lens that would focus both the propagating _ _
as well as the evanescent spectra. B = perH = uH + My, 2

Typical LHMs are composed of a combination of a regu-whereE andH are the electric and magnetic field intensities,
lar array of electrically small resonant particles referred to asespectivelyD is the electric flux density, an8l is the mag-
split-ring resonator¢SRR$ and a regular array of conduct- netic induction. The linear dielectric and magnetic responses
ing wires[2—6], responsible for the negativees; and ;¢ of the LHM are described by and u, respectively, while
respectively. The size and spacing of the conducting elep,, = ¢, E andMy, =uy.H are the nonlinear electric polar-
ments of which the medium is composed are assumed to gation and the nonlinear magnetization of the medium, re-
on a scale much smaller than the wavelengths in the frespectively.
quency range of interest, so that the composite medium may It is known thateqs and ues in @ LHM have to be disper-
be considered as a continuous and a homogeneousebne sive, otherwise the energy density could be negafilie
fective medium approximationThus far, almost all proper- Their frequency dispersion, including nonlinear effediat
ties of LHMs were studied in the linear regime of wave neglecting lossésis given by[7]
propagation, when botla.s; and u.; are considered to be s
independent of the field intensities. However, nonlinear ef- - 2y _ %

. . . €eif(®) = €o<€D(|E| ) 2), (3

fects in LHMs have been recently taken under consideration
by some author§7-9|. Zharovet al. [7] considered a two-
dimensional periodic structure created by arrays of wires and Fw?
SRRs embedded into a nonlinear dielectric, and they calcu- Hetfw) = Mo(l T2 (|H|2)>’ (4)
lated e.4; and u.¢; for a Kerr-type dielectric permitivity. They ONL
showed that the magnetic field intensity couples to the magwhere w, is the plasma frequency; is the filling factor,
netic resonance of the SRR in a nontrivial way, and thatwoni=@oni(|H[?) is the nonlinear resonant SRR frequency,
changing the material properties from left- to right-handedand ep(|E[?) = epo+ a|E[%, with a the strength of the nonlin-
and back is allowed by varying the field intensity. The studyearity. Positive(negativeé « corresponds to a focusir(gefo-
of the nonlinear properties of LHMs could facilitate future cusing dielectric. For a linear dielectrieogy, (|H|?) — wo,
efforts in creating tunable structures where the field intensityvherewy is the linear resonant SRR frequency. Then Egs.
changes their transmission properties. and (4) reduce to previously known expressidmsll]. The

D= GeffE =eE + PNL! (1)
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E(zt) =q(zt)é®@ ) H(zt) = p(z,t)e*=  (9)

with k being the wave number. The envelopgz,t) and
p(z,t) of E andH, respectively, change slowly mandt. We
therefore introduce the slow variables

E=e(z-'t), T=&%, (10

wheree is a small parameter, and’ =dw/dk is the group
velocity of the wave. Taking into account Ed8) and (9),
substituting slow variables into Eq&) and (7), assuming

that a=&e?, =2 and expressing andq as asymptotic

277 2 expansions in terms of [12],

A& D =ao(&7) +equ(é7) +2qp(ED + -,

FIG. 1. uefs as a function ofH|?/EZ, for Q=1.1 (solid), 1.15

(dotted, 1.20 (dashed, 1.25 (long-dashey A=3, F=0.4, anda P(&,7) = polé,7) + epy(é,7 +82p2(§, D+

>0. Inset: Fitting to a line of the three first curves of the main
figure for relatively small fields.

(11

we get various equations in increasing powers.ofhe lead-

ing order problem gives the dispersion relationck, where

parameters, w,, andw, are related to geometrical and ma-

terial parameters of the LHM components. Although can =k&’/ . At O(e?), we obtain

be readily put in the forne+ ey, (|E[?), for ues; this is not an g o' f72% . ,
obvious task, siNCes= et wonL), and woy, depends on PR agz (aM|QO| +eBlpo2)ae=0, (12)
H[* as[7.8]
0 &
aPXH[? = AEX(1 - X0 (X - 092, (5) i%#; a;; “ eBlpof+ aulaopo=0, (19
T

where X=wgy /0wy, Q=w/wy, E; is a characteristi¢large

electric field, andA is a function of physical and geometrical
parameter$7,8]. Our « is related to the parameters of Eqg.
(5) as a:illEﬁ, where the+ (—) sign corresponds to a

c=V1/eu. At O(gh), the group velocity is given as’

wherew”=(c?-w'?)/ w, is the slow time, and is the slow
space variable moving at the linear group velocity. By res-
caling 7, ¢, and the amplitudegg, pg according to

focusing (defocusing dielectric. Choosing f,=w,/27 E=X, T=w'12, (14)
=10 GHz andfy=wy/27=1.45 GHz, left-handed behavior
appears in a narrow frequency bandfrom f Q=\|A /w"|%, P= \r’IAp/w”Ipo, (15)
=1.45 to 1.87 GHg For relatively small fields whepss is
truly field dependent, one may consider that the magnetisvhereA, =wC%ua and Ap=wcC e/:.’ we get
nonlinearity uer=u+un (|H|?) is of the Kerr type, i.e., 2
un(H|)=BH[? (Fig. 1). The strength of the magnetic non- 1Qr+ Qoct (0 Q* + 7plP[)Q =0, (16)
linearity B8 can be treated as a fitting parameter. : 2 2p —
Using Egs.(1) and(2) and known identities, we get quite iP1+ Pyx+ (0p|P* + 0| Q[P =0, (17)
general vector wave equations for the fieElsndH, whereog ,=sgrA,,). Equationg16) and(17) are a special
) case of the fairly general and frequently studied system of
V2E - Meﬁ _Mﬁ Pae V(V.E) CNLS equationgManakov model known to be completely
a2 a2 integrable forog=op=0 [10]. A number of bright and dark

Consider arx-polarized plane wave with frequenaypropa-

= %[(VMNL) X H]+ %[MNL%(EE + PNL):| , (6

- 21(Vew) X E]+ ﬂmgw + MW]. ™

gating along thez axis[12]:

where

E = (E(z1),0,0),

H =(0,H(z1),0),

(8

soliton solutions have been obtained for EQ5) and (17)
when o=+1 [13-19. There is evidence that single-soliton
(single-hump solutions are stable while multihumps are not

[16]. The signs of the producjsa andeg determine the type
of nonlinear self-modulation (self-focusing or self-
defocusing effects that will occur. Foro=+1 both fields
experience the same type of nonlinearity.

Fore,u>0 andé,,é>0 we haveo=+1, and the system
of Egs.(16) and(17) accepts solutions of the forfi5]

QX,T) =uX)e™’, PX,T)=v(X)e"s’, (18

whereu,v are real functions ang, u, are real positive wave
parameters. The latter is necessary, if we are interested in
solitary waves that exponentially decay|%6— . Introduc-

ing Eqg. (18) into Egs.(16) and(17) we get
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FIG. 2. Envelopeg)y and py of the compound bright soliton
(op=04q=+1) for v=1 andr=Ay/Ap=2 in arbitrary units, with the
maximum amplitude oy normalized to 1.

FIG. 3. Envelopegy, and py of the compound dark soliton
(op=04q=-1) for k=1 andr=A4/A,=2 in arbitrary units, with the
minimum amplitude ofpy normalized to 1.

Uxx — Vgu + (u2 + vz)u =0, (19 Uyx F VIZJU _ (UZ + uz)v =0. (28)

Uy — VSU + W%+ U)o =0. (20)  For v, =v, Egs.(27) and(28) allow for kink-shaped local-

_ized soliton solution$20]
For vq,=v, Egs.(19) and(20) have a one-parameter family

of symmetric and single-humped soliton solutigifég. 2) u(X) = £ov(X) :(v/\s‘E)tanr(vX/\eE), (29

15-1 - .
[ L as can be seen in Fig. 4. In the context of the propagation of

u(X) = v(X) = vsechirX). (21)  two polarization components of a transverse EM wave in a
Kerr-type medium, a solution of this kind is often called a

There are also periodic solutions of the form A K o :
polarization domain wall. There are also periodic solutions

u(X) =AcogBX), v(X)=Asin(BX), (22 of the form
whereA=17+B? with B an arbitrary parameter. Now with- u(X) =AcogBX), v(X)=Asin(BX), (30)

out loss of generality, we take,=1 and denote’, asv. This . .

can always be achieved by a rescaling of variables, and ~ WhereA=y»"-B“ with B<w» an arbitrary parameter.

X. Then, for 0< »v<1 there is another, in general asymmet-  In order to check the validity of the Kerr-type approxima-
ric, one-parameter family of solutions for each fixed tion for the magnetic nonlinearity, we performed extensive

[15,18, numerical simulations of the complete Ed6) and (7) for
R the fields of Eqs(8) and (9) using the full expression for
u(X) =V2(1 - »?) coshwX)/, (23) Lo, with wpy, Obtained analytically from Eq(5), and
’ slightly different normalization. In the simulations we used
v(X) == 1\2(1 =12 sinh(X = Xp)/x, (24)  the exact solitons of Eq21) for a right-handed medium
where (RHM) and Eg.(25) for a LHM as initial conditions and

tested their subsequent time evolution and resulting stability.
K = coshX = Xp)cosHvX) — v sinh(X = Xg)sinh(vX) The Q-field amplitudes are shown in Fig. 5 for a riglitwo
right figureg and a left-(two left figures handed medium
with =1.2 and 3.0, respectively. We take ttaerage am-
T plitude of Q to be unity for the right-handed medium, while
For e,u<0 anda,3>0 we havec=-1, and Eqs(16)  the amplitude of the background wave @fis unity for the
and(17) accept dark soliton solutions of the forfrh9] LHM. Similar results are obtained for the fieRl In the right
- - _ 70 (KX-5K2T) part of Fig. 5, two bright soliton solutions of the form of Eq.
QXT) = P(X.T) = Ktanttkx) ~ile . (29 (21) are shown, with their difference being the chosen value
which are localized dips on a finite-amplitude background
wave, as shown in Fig. 3. In this very interesting case of a 15
LHM the electric and magnetic fields are coupled together,
forming a dark compound soliton. Note that the relative am-
plitudes are controlled by the corresponding nonlinearities
and frequency. Fosr=-1 Egs.(16) and(17) also have solu-
tions of the form[19]

QX T) =u(X)e T, P(X,T)=v(X)e ",  (26) is

whereu,v are real functions ang, v, are real positive wave

parameters. Introducing Eq&6) into Egs.(16) and(17), we
get FIG. 4. Envelopes)y and pg of the kink-shaped compound soli-

5 5 5 ton (op=0¢q=-1) for =1 andr=Ay/A,=2 in arbitrary units, with
Uxx + vqu = (U= +v9)u=0, (27)  the maximum amplitude of, normalized to 1.

where X, is an arbitrary parameter. Fo¢,=0, u becomes
symmetric andy antisymmetric.

|a,l [pol
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larger amplitudes the exact solitons deform. This is expected
since magnetic nonlinearity ceases to be of Kerr type and
saturation effects become more important.

In conclusion, we obtained a system of CNLS equations
equivalent to the Manakov model describing the propagation
of EM waves in a nonlinear LHMas well as in a nonlinear
RHM) for relatively small fields. Unlike a recent artidi21],
where only magnetic nonlinearity was considered in the
propagation of EM waves in LHMs, in the present work both
magnetic and dielectric nonlinearities were retained. The
present analysis, however, does not address the issue of the
switching effect between normal mediulRHM) and LHM
properties. Although not obvious from Eq®)—(5), reduc-
tion to the Manakov form becomes possible after a proper
approximation of the complex Egé) and (7). It turns out
that for the choice of parameters corresponding to a LHM,
the system admits compound dark soliton solutions. For a

FIG. 5. Space-time evolution of solitons. Right: Bright solitons choice of parameters corresponding to the normal medium,
(RHM) with high (uppe) and low (lower) amplituder. Left: Dark  the system admits compound bright soliton solutions. By re-
solitons(LHM) with high (uppep and low (lower) amplitudek. ferring to compound “dark” and “bright” solitons we mean

that the soliton components, i.e., the envelopes of the electric
of v in the initial conditions. For relatively high the soliton  and the magnetic fields, are either both dark or both bright.
is still stable, but its amplitude is strongly oscillating. For The described effects are not limited to the specific SRR-
relatively low v the soliton is propagating practically undis- wire system. They should also be present in other nonlinear
turbed. In the left part of Fig. 5 two dark soliton solutions of LHM designs, such as photonic crysta®?], coupled nano-
the form of Eq.(25) are shown, with their difference being wire systemg23], transmission line systenj24], and pho-
the chosen value of the constdntn the initial conditions. tonic system$25]. The case where the fields in the medium
Again, for relatively highk the soliton develops strong os- experience different types of nonlinearity, leading dg=
cillations and deforms as time progresses while for relatively-o,=1 or o,=-0,=1, corresponds to a medium of positive
low k the soliton is propagating practically undisturbed. Thee.ss and negativeuqss Or negativeegs; and positiveuess, re-
numerics thus demonstrates clearly that the analytical soluspectively. This interesting case where the Manakov system
tions of Egs.(12) and (13) are good approximate solutions does not seem to be integrable will be treated numerically in
for the complete problem at relatively small fields while ata future publication.
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